
Deep Heterogeneous Ensemble

Tien Thanh Nguyen1, Manh Truong Dang1, Tien Dung Pham2, Lan Phuong Dao3, Anh Vu Luong4, John
McCall1, and Alan Wee Chung Liew4

1 School of Computing Science and Digital Media, Robert Gordon University, Aberdeen, UK
2 Zalo Company, Hochiminh city, Vietnam

3 AN Company, Hanoi, Vietnam
4 School of Information and Communication Technology, Griffith University, Australia

Email: t.nguyen11@rgu.ac.uk

Abstract. In recent years, deep neural networks (DNNs) have emerged as a powerful technique in many areas
of machine learning. Although DNNs have achieved great breakthrough in processing images, video, audio,
and text, it also has some limitations such as needing a large number of labeled data for training and having
a large number of parameters. Ensemble learning, meanwhile, provides a learning model by combining many
different classifiers such that ensemble of classifier is better than using single classifier. In this study, we propose
a deep ensemble framework called Deep Heterogeneous Ensemble (DHE) for the supervised learning tasks. In
each layer of our algorithm, the input data is passed through a feature selection method to remove irrelevant
features and prevent overfitting. The cross-validation with K learning algorithms is applied to the selected data
to obtain the meta-data and the K base classifiers for the next layer. By this way, one layer will output the
meta-data as the input data for the next layer, the base classifiers, and the indices of the selected meta-data.
A combining algorithm is then applied on the meta-data of the last layer to obtain the final class prediction.
Experiments on 30 datasets confirm that the proposed DHE is better than a number of well-known benchmark
algorithms.

Keywords: Ensemble method · Deep learning · Multiple classifiers · Ensemble of classifiers · Ensemble system.

1 Introduction

It is well known that there is no one learning algorithm that perform well on all datasets. Ensemble learning,
where multiple classifiers are trained and combined to get better performance than using a single classifier, offers
an effective solution [10]. Nowadays, ensemble learning have been applied in many diverse fields such as computer
vision, bioinformatics, and software engineering. The success of ensemble learning was summarized in [3] in its ability
to reduce the risk of choosing a wrong learner and the ability to obtain a better approximation for the unknown
feature-class relationship. Among the many ensemble systems introduced, Random Forest [1] and XgBoost [2] have
been reported as the superior methods for supervised learning [4, 19].

In recent years, deep neural networks (DNNs) have emerged as a powerful supervised learning technique applied
to images, video, audio and text processing tasks [6]. Despite its successes, there are some limitations of DNNs.
First, these deep models have a large amount of parameters, for example, 144 million parameters in the DNN model
in [14]. Such complex models can only be trained on specially-designed hardware. Second, DNNs require a huge
amount of labeled data. When the cost of labeled data is too prohibitive, deep models might not bring about the
expected gains in performance. Finally, there is still little insight into the behaviors of DNNs, or how they were able
to achieve such a good performance. Even though there have been some works on understanding and visualizing
deep convolutional neural networks, such as in [18], the design of deep learning models remains without a coherent
theoretical basis.

In this study, we aim to design a novel deep ensemble learning model for the classification problem based on
multiple layers of ensemble of different learning algorithms (called DHE) which can get the advantages of both
ensemble system and DNNs as well as overcome the limitations of DNNs. We propose a cascade ensemble model
of many layers in which one layer produces new data in the form of the predictions of base classifiers for the next
layer. On each layer, the input training data will pass through a feature selection process to select a subset of
features as input. We then train the set of learning algorithms on the selected data to obtain the base classifiers
for the layer and the predictions. These predictions will form new training data for the next layer. The DHE starts
from the original training data and then goes deeply layer-by-layer until a performance score does not improve with
the addition of further layers. We then train a combining algorithm on the output of the final layer for the final
class prediction. The classification process works in a straightforward manner where an instance passes through the
layers and the prediction from the base classifiers in last layer is combined to obtain final predicted label.

ICONIP2019 Proceedings 1

Volume 16, No.1 Australian Journal of Intelligent Information Processing Systems

2 T.T. Nguyen et al.

In section 2, we briefly review ensemble learning for classification and recent developments in ensemble learning-
based deep model. In section 3, we give a detailed description of the general architecture for DHE. Experimental
studies on a number of datasets are provided in Section 4, followed by conclusion in Section 5.

2 Background and Related Work

2.1 Ensemble Learning

In ensemble learning, classifiers can be generated: either heterogeneously or homogeneously [9, 10]. In homogeneous
ensemble, many classifiers are generated by training one learning algorithm on many different training sets obtained
from the original one. These classifiers are then combined for the collaborated decision. There are many homogeneous
ensemble frameworks and among them Bagging, Boosting, Random Subspace, and Random Forest are the most well-
known methods. These methods generate the diversity in the ensemble by using different approaches for new training
data generation. Bagging, for example, uses the bootstrap method, i.e. sampling without replacement to generate
the training datasets. Random Subspace method, meanwhile, puts attention on the feature space by randomly
selecting many subsets of feature set to get the new training data associated with these subsets. Despite many
successes, homogeneous ensemble methods have some limitations such as they only work with unstable learning
algorithms like in Bagging or they are only applicable to high-dimension data for the method of Random Subspace.

On the other hand, heterogeneous ensemble uses different learning algorithms to generate system diversity. A
popular framework in heterogeneous ensemble learning is stacking [15] in which the predictions of the set of base
classifiers on the training data is used to train a combining algorithm for the final prediction. The research on
heterogeneous ensemble focuses on designing combining algorithms that effectively combine the predictions of the
base classifiers.

The combiners for heterogeneous ensemble system are mainly categorized into two groups: fixed combiner and
trainable combiner. Fixed combiner does not require training using the meta-data of the training set. Although the
training cost is reduced in the fixed combiner, ignoring the label information in the meta-data of the training set
can degrade the performance of this approach. The trainable combiner on the other hand is trained on meta-data of
training set for better classification accuracy. Some examples of trainable combining algorithms are Bayesian-based
method with Gaussian [11] and Gaussian Mixture Model [7], MRL [15], and Information granularity-based method
[10, 12].

2.2 Ensemble learning-based deep models

Recently, some deep learning models using homogeneous ensemble methods have been introduced using the repre-
sentation learning through layer-by-layer processing. The first ensemble learning-based deep model was proposed by
Zhou and Feng [19] where a deep learning system called gcForest was constructed with two random forests and two
completely-random trees working in each layer. In detail, the class distribution vector from each tree in a forest for
an instance is obtained by counting the percentage of different classes of training instances at the leaf node where
that instance falls into. The prediction vector of a forest is computed as the mean of averaging class distribution
vectors of all the trees inside. This vector is then concatenated with the original data as the input data for the next
layer. Utkin et al. [16] extended gcForest by considering the weights of the trees in the same forest when averaging
their predictions. These weights are found by minimizing a loss function on the training data based on the Euclidean
distance between the weighted average vector and the crisp distribution vector based on class labels of the training
instances. Utkin et al. [17] also introduced a Siamese Deep Forest (SDF) which concatenates the pairs of weighted
averaged prediction vectors with original data as the input data for the next layer. Although these deep learning
models achieve superior performance on diverse datasets, the homogeneous ensemble requires a large number of
base classifiers, resulting in expensive computation. For heterogeneous ensemble, Nguyen et al. [8] introduced a
two-stage model including K base classifiers in the first layer and one classifier in the second layer. The meta-data
from the output of the first layer is separated into K data pieces associated with the K base classifiers. The learning
algorithm on the second layer trains on these data pieces to obtain the meta-data which is then combined by a
combining algorithm for the final classification. Our idea here is to design a deep heterogeneous ensemble system
where a multi-layer architecture with a small number of diverse classifiers in each layer offers superior performance
than existing homogeneous ensemble based deep models.

2 ICONIP2019 Proceedings

Australian Journal of Intelligent Information Processing Systems Volume 16, No. 1

Deep Heterogeneous Ensemble 3

3 Deep Heterogeneous Ensemble System

3.1 General description

Let D = {(xn, ŷn)}, |D| = N be the training data, where xn ∈ Rd is the feature vector of the nth training
observation and ŷn ∈ Y, |Y| = M is its corresponding label. We denote K = {Kk} as the set of learning algorithms
in which |K| = K. Our task is to approximate the relationship f : xn → ŷn by a hypothesis and then use it to
assign a label for each test instance. In the context of ensemble system, an ensemble of classifiers is trained on the
given training set to obtain different approximations for the relationship f . These classifiers are then combined for
the final approximation.

In DHE, the data is passed through several layers. The combining algorithm then trains the combiner on the
output of the last layer. Each layer receives the meta-data of training data obtained from the previous layer and
outputs the triple {Fi,Li,Hi}:

– Fi: The indices of features selected by a feature selection method.
– Li: The meta-data generated at layer i which is used as input for layer i.
– Hi: The set of base classifiers which predicts on an instance at layer i.

In the design of each layer, before generating the meta-data and the set of base classifiers, we use a feature selection
method to select a subset of features to prevent overfitting as well as to improve ensemble performance. Here we are
inspired by the idea of drop out in DNNs in which units (both hidden and visible) in a neural network are dropped
to reduce overfitting. Feature selection is an important research topic in pattern recognition, data analysis, and
data mining. In fact, real-world data usually contain redundant attributes which increases storage and computation
costs. Besides, some of the attributes may be irrelevant to the class that the data belongs to. Hence, eliminating
redundant or irrelevant attributes will improve classification performance and efficiency. Feature selection is not
only beneficial in avoiding overfitting but it also provide a deep insight into the data generation process [13].

As commented in [19], the stacking model uses a layer framework in the ensemble since re-training on multiple
layers of meta-data can lead to overfitting. In this work, we apply the filter feature selection strategy [13] on the
input data of a layer to prevent overfitting. As the filter approach focuses only on the intrinsic properties of the data
while ignoring the classification process, it can reduce overfitting when multiple layers of meta-data are generated.
Each layer outputs the indices of the selected features in a set Fi which will be used for feature selection during
classification.

To generate the meta-data Li from the labeled data at the ith layer, we use Ti-fold cross validation on the
selected meta-data L̂i�1 obtained the meta-data Li�1 of the (i− 1)th layer. In detail, L̂i�1 is divided into Ti disjoin
parts in which the cardinality of each part is nearly similar. One part will be used as the test set and the other will
be used as the training set. By doing this, an observation in L̂i�1 will be used as the training data for Ti − 1 times
and as test data for 1 time. At the end, we obtain pik,m(xn), which is the prediction of the kth classifier at the ith

layer that xn belongs to the class label ym. We assume that the classifiers output the prediction in the form of soft
label [10, 12]:

M∑
m=1

pik,m(xn) = 1; ∀k = 1, ...,K;n = 1, ..., N (1)

From these predictions, we can now create the meta-data Li as the input for the next layer. This is done by
concatenating the prediction vector of each classifier for each observation. The meta-data of the training set at the
ith layer is as an N ×MK matrix. The row of this matrix is the predictions of all classifiers for a specific instance
and the column is the predictions of all instances arranged in the order:

Li = [Li(x1)...Li(xN)]T (2)

Li(xn) =
[
pi1,1(xn), pi1,2(xn), ..., piK,M�1(xn), piK,M (xn)

]
(3)

The set of base classifiers of the ith layer Hi is also learned by training K given learning algorithms on the
selected meta-data L̂i�1 i.e. Hi = {hi,k} hi,k : L̂i�1(xn) → ŷi. At the end of the last layer, a combining algorithm
is used to train the combiner on the meta-data for the collaborated decision.

Given a test instance x, it will pass through the layers to finally obtain the meta-data when reaching the last
layer. Referring to the set of selected features, we select associated features L̂i�1(x) in the meta-data of x from the
(i− 1)th layer. The base classifiers Hi then work on this selected meta-data to obtain the meta-data of x at the ith

layer. Once again, the meta-data of x i.e. Li(x) is given in a shape of a MK-vector. The meta-data output of the
last layer is fed into the combiner to generate the predicted label.

ICONIP2019 Proceedings 3

Volume 16, No.1 Australian Journal of Intelligent Information Processing Systems

4 T.T. Nguyen et al.

1st Layer !" ith Layer !#

Fi
na

l P
re

di
ct

io
n

Combiner

Feature
selection

Cross Validation
K learning algs

K learning algs

!#$"

%#

!#
!&#$"

…

'#

…

Training data

Fig. 1. The deep heterogeneous ensemble system

3.2 Combining algorithms

To examine the influence of the combining algorithm on the proposed framework, we experimented on two popular
combining algorithms. The first method is the Sum Rule, a fixed combiner for heterogeneous ensemble systems [5].
Sum Rule simply sums the meta-data of each test instance for each class and assigns label to the class with the
maximum value. In the proposed framework, the Sum Rule for a test instance x at the ith layer is given by:

x ∈ yt if t = argmaxm=1,...,M

K∑
k=1

pik,m(x) (4)

We also used MLR [15], a trainable combiner, to obtain the final collaborated decision. MLR is a weight-based
technique in which the weigh that each classifier contributes to the combination is found by solving:

min

N∑
i=1

(
I[ym = ŷi]−

K∑
k=1

ωkmpik,m(xi)

)2
 (5)

where xi is a training observation and I[·] is the indicator function which returns 1 if the condition is true and 0
otherwise. Once the weights are obtained, prediction is given by:

x ∈ yt if t = argmaxm=1,...,M

{
K∑

k=1

ωkmpik,m(x)

}
(6)

4 Experimental Studies

4.1 Configurations

We used the same configuration for DHE in all experiments: in each layer, we used three learning algorithms namely
K Nearest Neighbor (K was set to 5), Logistic Regression, and Näıve Bayes to generate the meta-data and the base
classifiers. We used the 10-fold Cross Validation in all layers to generate the meta-data. To automatically determine
the number of layers, we split the training data into the training part and the validation part. We then used the
training part to grow the model and trained the combiner on the meta-data of each layer. The performance of

4 ICONIP2019 Proceedings

Australian Journal of Intelligent Information Processing Systems Volume 16, No. 1

Deep Heterogeneous Ensemble 5

Table 1. The information of experimental datasets

Data
of

training
of

validation
of
test

of
class labels

of
dimensions

Appendicitis 59 15 32 2 7
Artificial 392 98 210 2 10
Australian 386 97 207 2 14
Balance 349 88 188 3 4
Banana 2968 742 1590 2 2
Biodeg 590 148 317 2 41
Blood 418 105 225 2 4
Breast-Cancer 382 96 205 2 9
Breast-Tissue 59 15 32 6 9
Cleveland 165 42 90 5 13
Contraceptive 824 207 442 3 9
GM4 560 140 300 3 1000
Haberman 171 43 92 2 3
Heart 151 38 81 2 13
Hill Valley 1356 340 728 2 100
Isolet 4365 1092 2340 26 617
Led7digit 280 70 150 10 7
Madelon 1120 280 600 2 500
Mammographic 464 117 249 2 5
Musk1 266 67 143 2 166
Newthyroid 120 30 65 3 5
Penbased 6155 1539 3298 10 16
Ring 4144 1036 2220 2 20
Sonar 116 29 63 2 60
Titanic 1232 308 661 2 3
Twonorm 4144 1036 2220 2 20
Vehicle 473 119 254 4 18
Waveform w noise 2800 700 1500 3 40
Waveform wo noise 2800 700 1500 3 21
Wine 99 25 54 3 13

DHE at each layer was evaluated by the combiner on the validation part. We followed the experiments in [19] in
which 80% of training data is used for the training part and the remainder is used for the validation part. The layer
growing process is stopped if the classification error rate on the validation part does not improve after 5 layers.

We evaluated DHE using 3 different feature selection methods. On the input meta-data of each layer, we
computed (i) chi-squared statistic between each meta-data feature and class (ii) the ANOVA F-value, and (iii) the
mutual information. These methods were implemented from the scikit-learn library. We then ranked the meta-data
features based on the results and selected the top 50% of the meta-data as the final input features for the layer.

We compared DHE to some well-known benchmark algorithms in deep ensemble learning and standard ensemble
learning: A standard Random Forest with 2000 trees, gcForest (with 500 trees in each of 8 forests), XgBoost with
2000 trees, and Multi-Layer Perceptron (MLP). As the performance of MLP significantly depends on the network
structure, we examined a range of parameters including input-30-20-output, input-50-30-output, and input-70-50-
output; and then reported the best performance.

To assess the statistical significance in the comparisons, we used the Friedman test to test the null hypothesis
that all methods perform equally on all datasets. If the p-value of this test is smaller than a significant threshold e.g.
0.05, we reject the null hypothesis and conduct the Nemenyi post-hoc test for pairwise comparison on all datasets.
The experiments were conducted on 30 datasets selected from various sources such as the UCI Machine Learning
Repository and [9] (for the GM4 dataset). The detailed information of these datasets are presented in Table 1.

4.2 Experimental Results

Different feature selection methods: Fig 2 and 3 present the classification error rates of DHE with MLR and
Sum Rule using the three different feature selection methods (denoted by DHE MLR and DHE Sum). Clearly,
different feature selection methods have a significant effect on a number of datasets such as Cleveland, Blood,
Artificial with DHE MLR and Breast-Tissue, Cleveland, Balance, and Penbased with DHE Sum. In the next section,
we use the results with mutual information-based feature selection method to compare with those of the benchmark
algorithms.

ICONIP2019 Proceedings 5

Volume 16, No.1 Australian Journal of Intelligent Information Processing Systems

6 T.T. Nguyen et al.

!

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

App
en

dic
itis

Arti
fic

ial

Aus
tra

lia
n

Bala
nc

e

Ban
an

a

Biod
eg

Bloo
d

Bre
as

t-C
an

ce
r

Bre
as

t-T
iss

ue

Clev
ela

nd

Con
tra

ce
pt

ive

GM
4

Hab
er

m
an

Hea
rt

Hill_
va

lle
y
Iso

let

Le
d7

dig
it

M
ad

elo
n

M
am

mog
ra

ph
ic

M
us

k1

New
th

yr
oid

Pen
ba

se
d

Ring
Son

ar

Tita
nic

Twon
or

m

Veh
icl

e

W
av

ef
or

m
_w

_n
ois

e

W
av

ef
or

m
_w

o_
no

ise

W
ine

DHE_MLR(chi2) DHE_MLR(ANOVA) DHE_MLR(mutual_info)

Fig. 2. The classification error rate of DHE MLR using three feature selection methods

!

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

App
en

dic
itis

Arti
fic

ial

Aus
tra

lia
n

Bala
nc

e

Ban
an

a

Biod
eg

Bloo
d

Bre
as

t-C
an

ce
r

Bre
as

t-T
iss

ue

Clev
ela

nd

Con
tra

ce
pt

ive

GM
4

Hab
er

m
an

Hea
rt

Hill_
va

lle
y
Iso

let

Le
d7

dig
it

M
ad

elo
n

M
am

mog
ra

ph
ic

M
us

k1

New
th

yr
oid

Pen
ba

se
d

Ring
Son

ar

Tita
nic

Twon
or

m

Veh
icl

e

W
av

ef
or

m
_w

_n
ois

e

W
av

ef
or

m
_w

o_
no

ise

W
ine

DHE_Sum(chi2) DHE_Sum(ANOVA) DHE_Sum(mutual_info)

Fig. 3. The classification error rate of DHE Sum using three feature selection methods

Comparison to baselines: Table 2 presents the classification error rates of DHE MLR and DHE Sum using
mutual information and 4 well-known benchmark algorithms. Based on the experimental results and the statistical
test results, some observations can be made:

– The P-value of the Friedman test is 1.261E-08 thus we rejected the null hypothesis. The Nemenyi test result in
Fig 4 shows that DHE MLR is better than all four benchmark algorithms and DHE Sum is better than MLP
and XgBoost. Meanwhile, there are no differences between DHE MLR and DHE Sum and between DHE Sum
and gcForest/Random Forest.

– DHE MLR achieves the lowest average rank among all methods (rank value 2.03). On the 30 datasets, DHE MLR
ranks first in 12 cases (40%), ranks second in 12 cases (40%), and does not rank below third on any datasets.
DHE Sum ranks second with a rank value 2.6. DHE Sum only performs poorly on 3 datasets: Penbased, Con-
traceptive, and Breast-Tissue. XgBoost and MLP meanwhile are the two poorest methods where MLP ranks
fifth (rank value 4.40) and XgBoost ranks sixth (rank value 4.68).

– The proposed DHE is significantly superior than the benchmark algorithms on some datasets such as Breast
Tissue (0.2188 of DHE MLR vs. 0.25 of gcForest), Cleveland (0.3333 of DHE MLR vs. 0.4 of gcForest), Haber-

6 ICONIP2019 Proceedings

Australian Journal of Intelligent Information Processing Systems Volume 16, No. 1

Deep Heterogeneous Ensemble 7

2 3 4 5

CD

DHE_MLR

DHE_Sum

GcForest

Random Forest

MLP

XgBoost

Fig. 4. The Nemenyi test result

Fig. 5. The classification error rate of DHE Sum on the validation set and test set after each layer on two datasets

man (0.2065 of DHE Sum vs. 0.25 of MLP), Heart (0.1358 of DHE MLR and DHE Sum vs. 0.1728 of gcForest),
and Hill valley (0.0137 of DHE Sum vs. 0.3214 of XgBoost).

– DHE MLR is better than DHE Sum on some datasets such as Penbased, Breast-Tissue, Contraceptive, and
Mammographic, and Led7digit. It is because MLR trains the combiner on the meta-data for class label predic-
tion. However, there are some exceptions in which DHE Sum outperforms DHE MLR, for example, on Balance
and Haberman dataset.

– In comparison to gcForest, DHE is simpler and faster with only three different learning algorithms in each layer.
In contrast, gcForest uses a large number of trees in each forest (500 trees in each of 8 forests in the original
paper and in our experiment), resulting in very expensive training.

Benefit of layer-by-layer processing: Fig 5 shows the classification error rate of DHE Sum with mutual in-
formation feature selection on the validation set and test set for the Madelon and Waveform wo noise dataset. It
can be seen that the classification error rate of DHE Sum on the validation set and test set both reduces through
each layer. This is evidence of overfitting avoidance. This also indicates that the layer-by-layer processing works

ICONIP2019 Proceedings 7

Volume 16, No.1 Australian Journal of Intelligent Information Processing Systems

8 T.T. Nguyen et al.

Table 2. The classification error rate of DHE MLR, DHE Sum, and the benchmark algorithms

MLP
Random
Forest

gcForest XgBoost DHE MLR DHE Sum

Appendicitis 0.1875 (3) 0.2188 (6) 0.1875 (3) 0.1875 (3) 0.1875 (3) 0.1875 (3)
Artificial 0.3238 (6) 0.2381 (4) 0.2048 (3) 0.2429 (5) 0.1905 (1) 0.2000 (2)
Australian 0.2802 (6) 0.1159 (1) 0.1353 (3) 0.1401 (5) 0.1353 (3) 0.1353 (3)
Balance 0.0266 (1) 0.1862 (6) 0.1543 (5) 0.1117 (4) 0.1064 (3) 0.0745 (2)
Banana 0.1019 (1) 0.1044 (2) 0.1075 (5) 0.1107 (6) 0.1050 (3.5) 0.1050 (3.5)
Biodeg 0.1199 (2) 0.1104 (1) 0.1388 (5) 0.1546 (6) 0.1262 (3) 0.1325 (4)
Blood 0.2667 (3) 0.2711 (4) 0.2800 (5.5) 0.2800 (5.5) 0.2400 (1) 0.2444 (2)
Breast-Cancer 0.0390 (3.5) 0.0439 (5) 0.0293 (1) 0.0488 (6) 0.0390 (3.5) 0.0341 (2)
Breast-Tissue 0.8438 (6) 0.2813 (3) 0.2500 (2) 0.3125 (4) 0.2188 (1) 0.4688 (5)
Cleveland 0.6222 (6) 0.4222 (4) 0.4000 (3) 0.4444 (5) 0.3333 (1) 0.3556 (2)
Contraceptive 0.4299 (1) 0.4570 (3) 0.4615 (4.5) 0.4615 (4.5) 0.4389 (2) 0.4661 (6)
GM4 0.0200 (5) 0.0000 (2.5) 0.0000 (2.5) 0.1033 (6) 0.0000 (2.5) 0.0000 (2.5)
Haberman 0.2500 (3) 0.2717 (4) 0.2826 (5) 0.3587 (6) 0.2283 (2) 0.2065 (1)
Heart 0.3086 (6) 0.1852 (4) 0.1728 (3) 0.2222 (5) 0.1358 (1.5) 0.1358 (1.5)
Hill valley 0.4382 (6) 0.3365 (4) 0.3832 (5) 0.3214 (3) 0.0151 (2) 0.0137 (1)
Isolet 0.0500 (1) 0.0611 (5) 0.0615 (6) 0.0543 (3) 0.0526 (2) 0.0556 (4)
Led7digit 0.2800 (1.5) 0.3133 (5) 0.3000 (3.5) 0.3400(6) 0.2800 (1.5) 0.3000 (3.5)
Madelon 0.4867 (6) 0.3217 (2) 0.3933 (5) 0.3117 (1) 0.3283 (3) 0.3333 (4)
Mammographic 0.2570 (6) 0.2169 (5) 0.1526 (2) 0.2048 (4) 0.1365 (1) 0.1606 (3)
Musk1 0.1818 (6) 0.1538 (4) 0.1259 (1) 0.1678 (5) 0.1329 (2) 0.1399 (3)
Newthyroid 0.0154 (3.5) 0.0154 (3.5) 0.0308 (5) 0.0462 (6) 0.0000 (1.5) 0.0000 (1.5)
Penbased 0.0121 (5) 0.0088 (4) 0.0076 (1.5) 0.0082 (3) 0.0076 (1.5) 0.0391 (6)
Ring 0.1482 (6) 0.0428 (5) 0.0221 (1.5) 0.0284 (4) 0.0225 (3) 0.0221 (1.5)
Sonar 0.1587 (5) 0.1587 (5) 0.1270 (2.5) 0.1587 (5) 0.1111 (1) 0.1270 (2.5)
Titanic 0.2496 (4.5) 0.2496 (4.5) 0.2496 (4.5) 0.2496 (4.5) 0.2405 (2) 0.2375 (1)
Twonorm 0.0293 (6) 0.0248 (5) 0.0221 (3) 0.0239 (4) 0.0212 (1.5) 0.0212 (1.5)
Vehicle 0.4882 (6) 0.2165 (3) 0.2205 (4) 0.2283 (5) 0.1811 (1.5) 0.1811 (1.5)
Waveform w noise 0.1633 (6) 0.1367 (4) 0.1273 (3) 0.1380 (5) 0.1260 (2) 0.1240 (1)
Waveform wo noise 0.1447 (5) 0.1440 (4) 0.1373 (3) 0.1713 (6) 0.1320 (2) 0.1307 (1)
Wine 0.6111 (6) 0.0000 (2.5) 0.0000 (2.5) 0.0556 (5) 0.0000 (2.5) 0.0000 (2.5)

Average rank 4.4 3.83 3.45 4.68 2.03 2.6

effectively with heterogeneous ensemble system in which using the meta-data as the input data for the next layer
in a multi-layer deep framework reduces the overall classification error rate.

5 Conclusions

In summary, we introduced a novel DHE algorithm inspired by the layer-by-layer processing of DNNs. In each layer
of our DHE, we first applied a feature selection method to the input data (i.e. the meta-data from the previous
layer) which remove the irrelevant features and prevent overfitting for the model. A cross-validation procedure and
K different learning algorithms is then applied to the selected data to obtain the meta-data and the base classifiers.
The meta-data then is then used as the input data for the next layer. We used a combining algorithm on the
meta-data of the last layer to train a combiner for the class prediction. The layer growing process is controlled
by using a validation set where we stop creating new layer if the classification error rate does not improve after a
specific number of layers. Experiments on 30 datasets confirm that DHE is better than four well-known benchmark
algorithms.

The proposed DHE resolves some limitations of DNNs mentioned before. First, like the gcForest, DHE only has
two parameters: the number of layers for early stopping control and the number of folds in cross-validation which
can simply set with default values. Second, DHE only uses a small number of learning algorithms on each layer (3 in
our experiments), resulting in a very fast training process. Finally, by using only traditional learning algorithms in
each layer, this model thus does not require a large amount of labeled data or any specialized hardware for training
like in many DNNs.

References

1. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
2. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining. pp. 785–794. ACM (2016)

8 ICONIP2019 Proceedings

Australian Journal of Intelligent Information Processing Systems Volume 16, No. 1

Deep Heterogeneous Ensemble 9

3. Duin, R.P.: The combining classifier: to train or not to train? In: Object recognition supported by user interaction for
service robots. vol. 2, pp. 765–770. IEEE (2002)

4. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world
classification problems? The Journal of Machine Learning Research 15(1), 3133–3181 (2014)

5. Kittler, J., Hater, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence 20(3), 226–239 (1998)

6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)
7. Nguyen, T.T., Liew, A.W.C., Tran, M.T., Nguyen, M.P.: Combining multi classifiers based on a genetic algorithm–a

gaussian mixture model framework. In: International Conference on Intelligent Computing. pp. 56–67. Springer (2014)
8. Nguyen, T.T., Liew, A.W.C., Tran, M.T., Nguyen, T.T.T., Nguyen, M.P.: Fusion of classifiers based on a novel 2-stage

model. In: International Conference on Machine Learning and Cybernetics. pp. 60–68. Springer (2014)
9. Nguyen, T.T., Nguyen, M.P., Pham, X.C., Liew, A.W.C.: Heterogeneous classifier ensemble with fuzzy rule-based meta

learner. Information Sciences 422, 144–160 (2018)
10. Nguyen, T.T., Nguyen, M.P., Pham, X.C., Liew, A.W.C., Pedrycz, W.: Combining heterogeneous classifiers via granular

prototypes. Applied Soft Computing 73, 795–815 (2018)
11. Nguyen, T.T., Nguyen, T.T.T., Pham, X.C., Liew, A.W.C.: A novel combining classifier method based on variational

inference. Pattern Recognition 49, 198–212 (2016)
12. Nguyen, T.T., Pham, X.C., Liew, A.W.C., Pedrycz, W.: Aggregation of classifiers: A justifiable information granularity

approach. IEEE transactions on cybernetics 49(6), 2168–2177 (2018)
13. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. bioinformatics 23(19),

2507–2517 (2007)
14. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization

and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)
15. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of artificial intelligence research 10, 271–289 (1999)
16. Utkin, L.V., Kovalev, M.S., Meldo, A.A.: A deep forest classifier with weights of class probability distribution subsets.

Knowledge-Based Systems (2019)
17. Utkin, L.V., Ryabinin, M.A.: A siamese deep forest. Knowledge-Based Systems 139, 13–22 (2018)
18. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European conference on computer

vision. pp. 818–833. Springer (2014)
19. Zhou, Z.H., Feng, J.: Deep forest: Towards an alternative to deep neural networks. arXiv preprint arXiv:1702.08835

(2017)

ICONIP2019 Proceedings 9

Volume 16, No.1 Australian Journal of Intelligent Information Processing Systems

	Paper230_camera_ready
	ICONIP2019_paper321
	Quasi-random Image Transition and Animation

	camera_ready_paper_389
	ICONIP-240
	Label Distribution Data Feature Reduction Based on Fuzzy Rough Set Model

	356-YOURUI-ICONIP2019
	654-HFOD_654_ICONIP
	ICONIP28_AJIIPS
	ICONIP_2019_652
	ICONIP2019_IGA

