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Abstract. Recovery of minimum rank matrices is important in many real world applications and has been
attracting signi�cant research interest in recent years. Traditional methods for low-rank matrix recovery
are e�cient for the simple type of noise, however noise in real-world data is much more complex than
considered so far. As a result, methods based on spatial data representation are insu�cient. In this paper,
we present weighted nuclear norm for matrix recovery in frequency domain based on the e�ect of noise
in the image. Experimental results clearly show that the weighted minimization in the frequency domain
outperforms many state-of-the-art de-noising algorithms in terms of both quantitative measure and visual
perception quality.
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1 Introduction

Low-rank matrix approximation and completion are prevalent tasks in machine learning. Given observed noisy
matrices X

0

1; X
0

2; :::; X
0

n , the aim of matrix recovery is to construct a matrix Y 0 that is the approximation of
matrix X at its unobserved entries. However, there are in�nite number of matrices that perfectly agree with
the observed entries of matrix X.Thus, selection of recovered matrix Y is under-speci�ed without additional
assumptions i.e. matrix X is low-rank that suggests the assumption of X 0 to be low-rank. Formally, it can be
represented as: approximation of matrix X 2 Rn 1�n 2 by rank matrix X 0 = UV T . Low-rank matrix approxi-
mation can be formulated as the joint low-rank and sparse matrix minimization problem. In earlier work, the
matrix recovery is always assumed to be smooth or sparse under some prior knowledge, such as the gradient.
Due to the highly nonlinear and its non-convex properties, minimization problem is di�cult to solve directly
and generally NP-hard problem [16].

Fig. 1. Noise behaviour in frequency domain

In data analytics, owe to the rapid development of convex and non-convex optimization techniques, in recent
years, numbers of methods have been proposed to improve the robustness for low-rank matrix (LRM) recovery
[2, 3, 5{8, 15, 17, 18, 9, 10]. Among them, PCA is one of the most popular methods for exploring the low-rank
matrix representation that seeks best optimal low-rank approximation of data. The aim is to �nd low-rank
matrix based on some feasible measurement ensembles. When these measurements are a�ne, LRM is given as

minX rank(X) s:t: A(X) = b
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. Where linear map

A : Rm�n ! Rs

and the vector

b 2 Rs

are known. The above recovery problem aims to �nd the low-rank matrix that satis�es linear equality con-
straints. Its tightest convex relation is nuclear norm minimization which is a challenging optimization problem
due to its discrete nature of the rank function. In general, the problem is categorized into two categories: the
low-rank matrix factorization (LRMF) and nuclear-norm minimization (NNM). For a given noisy matrix Y,
LRMF estimates the closest matrix to X under certain data �delity function while being able to be factorized
into the product of two low-rank matrices. Whereas NNM �nds the approximate Y by X, while minimizing the
nuclear norm of X. As compared to LRMF, NNM is widely explored because it has the tightest convex relaxation
to the non-convex LRMF problem with certain data �delity term. Candes and Recht showed that most of the
low-rank matrix can be recovered perfectly through NNM optimization [4] whereas NNM-based matrix recovery
with F-Norm can be easily solved by soft thresholding operation on the singular value of observed matrix [3]

X
0

= argminX jjY �Xjj2F + �jjXjj� (1)

where � is a positive constant and can be obtained by soft thresholding

X
0

= US� �V
T : (2)

Recently, several e�orts have been made to deal with complex noise based on NNM. Gu et al. tackled the com-
plex noise through weighted nuclear norm based on soft thresholding. Zhao et al. presented MoG-RPCA which
had the capability to �t more complex noise via sophisticated assumptions and regularization [20]. However,
it estimates multiple distributions simultaneously by introducing more parameters, making the model more
complex and di�cult to optimize. The robust principal component analysis employs ‘1-norm to distill a sparse
matrix that characterizes large error corruptions, especially Laplacian noise [19, 10, 14, 13, 12]. Wang et al. pre-
sented matrix recovery by combining TV, nuclear and ‘1 norms that help to overcome large sparse noise and
enhances the structural smoothness of image [16]. Bayesian-based PCA has also been investigated to deal with
complex noise [1, 9] based on the assumption that noise is sparse and dense. However, these methods are still
have limited performance in the presence of complex noise. MoG-RPCA performed well however, it ends up to
complexity of the model due to several parameters [20]. [20].

Even though of several contribution for low-rank matrix recovery, due to the complexity of noise, methods
based on ‘1 or ‘2 norm are ine�cient and e�ective only for speci�c type of noise. Moreover, to deal with the
complex noise, techniques based on rigorous assumptions have been developed that result in optimization chal-
lenge due to several parameters and redundancy [11]. In conclusion, traditional methods are not e�ective either
in the presence of complex noise due to their limited capacity against noise reduction or computational complex
due to huge number of parameters.

Fig. 2. Noise behaviour of voice signal: Spatial vs frequency domain
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1.1 The Problem

We begin by carefully stating what we mean by low-rank matrix recovery. We observe a matrix Y of size M�N .
The task is to recover the underlying low-rank matrix X from its degraded observation Y. However, low-rank
minimization is a non-convex NP hard problem. Therefore, nuclear-norm minimization (NNM) is adopted as
its convex relaxation, which can be written as:

X
0

j = argminX j
jjY �Xj jj2F + �jjXj jj� (3)

As discussed above, low-rank matrix recovery in the spatial domain by using either ‘1 or ‘2 norm is not e�cient
in the presence of complex noise as methods based on ‘1 and ‘2 are e�ective for the simple type of noise such
as Gaussian, etc. However, noise in real world is more complex, thus, traditional PCA based methods are not
e�cient to recover matrix as di�erent noise distribution have di�erent shapes and values in spatial domain. In
conclusion, sophisticated techniques are required to model the complex noise that can deal with di�erent noise
distributions simultaneously.

1.2 Contribution

In this paper, we extend low-rank matrix recovery based on the noise behavior that deals with complex noise
regardless of its types. Noise is always chaotic in the spatial domain as shown in Fig 1. To overcome this, we
express our estimator as low-rank matrix approximation on the frequency component of a signal as energy
of noise signal is always scattered high-frequency areas. We, therefore construct low-rank approximation X of
matrix Y on the frequency component. The contribution of this paper is three-fold.

We analyze optimization problem of weighted nuclear norm in frequency domain and adaptively add propor-
tional noise according to noise level to recover the image information. Third, we adopt the proposed weighted
algorithm to low-rank matrix recovery to demonstrate its great potentials in low-level vision applications. The
experimental results showed that weighted nuclear norm minimization in frequency domain noise reduction out-
performs state-of-the-art de-noising algorithms not only in PSNR index, but also in local structure preservation
which results in visually more pleasant de-noising outputs.

2 Preliminaries

In this section, we provide some basic concepts, especially, we provide brief discussion on RPCA followed by
image transformation into frequency domain which we have used in the formation of objective function. We
start by establishing the notation used throughout the paper.

Matrices are denoted using upper case letters; original matrix, corrupted matrix, recovered matrix, and noise
matrix are denoted by X 0, X, Y , and N where X 0, X, Y , and N 2 Rn 1�n 2 . Similarly, CX 0 , CX , CY ; andCN
represent clean, recovered, noisy, and additive noise respectively in the frequency domain.

Consider the noise-corrupted observed data Y such that Y = X + N , e.g., image or video, where N is the
additive noise and X is the required clean data. The aim is to recover X from noisy data Y corrupted by additive
noise N . To deal with this challenge, several methods have been presented. RPCA expects the noise matrix to
be sparse which means noise follows Laplace-like distribution. Formulation of RPCA can be described as

min jjXjj� + �jjN jj1 s:t: Y = X +N

where jjXjj� is the nuclear norm accumulating all singular values of X and jj:jj1 is the ‘1 norm and � is the
weight balance parameter. The matrix X is the desired clean and low-rank matrix, where N is the estimated
noise. N is encouraged to be sparse which means it follows a Laplacian distribution. Based on the assumption,
N is sparse in RPCA, ‘2-based matrix recovery (min jjXjj�+�jjN jj22) proposed to deal with Gaussian noise but
incapable to gross outliers [20].

To reach a clean recovery in the presence of complex noise that is always hidden in real-world images, more
sophisticated techniques have been developed, i.e., handle multiple noise distributions at the same time such as
di�erent noise with distinct mean and variance. However, these methods end up to a huge number of parameters
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that e�ect the model optimization. As discussed earlier, conventional PCA is e�cient for speci�c type of noise,
however in the presences of complex noise, that always exists in real-life images, methods based on ‘1, ‘2 or
Frobenius norm fails to perform well as noise matrix is chaotic in spatial domain and the noise behavior cannot
be analyzed well. To overcome this issue, recently complex assumptions are considered that end up with huge
number of parameters resulting in complexity of the model. Whereas, on the other hand, behavior of the noise
is quite di�erent in frequency domain as frequency coe�cients of noise are signi�cantly higher in compared
to noise-free images and absolute value of coe�cient of noisy values is always constant with respect to their
variance [18]. This phenomenon would help to deal with noisy data e�ciently in frequency domain as compared
to spatial representation. Thus, we applied discrete cosine transformation to convert the image into frequency
domain and applied weighted nuclear norm on frequency component.

CYj1 ;j2
= D(Y i 1 ;i 2 ) = sj 1 sj 2

n 1�1X

i 1 =0

n 2�1X

i 2 =0

C(i1; i2; j1; j2)Yi 1 ;i 2 (4)

CYj1 ;j2
= Sj 1 ;j 2 � Y (5)

CY 2 Rn 1�n 2 is the DCT coe�cient matrix of input image. Where n1 and n2 are the height and width of the
image (n1 � n2 is the image dimension). ’*’ is the image convolution and Sj 1 ;j 2 = sj 1 sj 2 C(i1; i2; j1; j2) with the

same size of Y is generated to calculate the j1; j2th DCT coe�cient of Y . sj =
p

1=n if j = 0 and sj =
p

2=n
otherwise. The general equation for 2D discrete cosine transformation is given as

CYj1 ;j2
= sj 1 sj 2

N �1X

i 1 =0

M �1X

i 2 =0

Yi 1 ;i 2 cos

�
�j1(2i1 + 1)

2N

�
cos

�
�j2(2i2 + 1)

2M

�
: (6)

We calculate its frequency coe�cient using Eq.2 and its frequency representation could be written as
CY = CX + CN Where CX , CN and CY are the frequency coe�cient of matrix X, N and Y respectively.

2.1 Motivation

The low-rank assumption based on frequency component can also be motivated as follows. Noise follows an
independent and identical distribution and could be at any location in the image as shown in �gure 1. More
precisely, di�erent noise distribution has di�erent shapes and values in spatial domain, thus it is quite di�cult
to recover such noise in spatial domain. Furthermore, this situation gets worse in the presence of complex noise,
i.e., it could be Gaussian or Laplacian in any part of the image. Unlike spatial domain, noise with di�erent
distributions has similar representation in the frequency domain that evidently gives a reason to apply and
solve this problem in the frequency domain as shown in �gure 1. Moreover, noisy images have higher frequency
coe�cient as those of natural images. Thus, complex noise regardless of its types, can be modeled e�ciently in
frequency domain due to noise behaviour in frequency domain.

3 Low-Rank Minimization in Frequency Domain

In this section, we present the proposed objective function for low-rank matrix recovery in frequency domain.
A general fact is that, unlike noise, much of the signal energy lies at low-frequencies sub-band which contains
the most important visual parts of the image. In the presence of noise in the image, the frequency coe�cients
are much higher than in natural images. In spite of characterizing each noise pixel individually, one can design
�lters according to the image frequency components to smooth images or remove noise. Based on the fact that
the frequency components of noisy data have similar values, we have considered the image analysis in frequency
domain and converted image into frequency domain using discrete cosine transform.

3.1 Optimization

In this section, we propose a weighted nuclear norm minimization on frequency component. Y , X, and N are
the corrupted observed data, original data, and additive noise, respectively.

To this end, consider the optimization problem in spatial domain.

min
N;X
jjN � �jj2F + jjXjjw;� s:t: Y = X +N (7)
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where � is a synthetic matrix with the same size of Y .

The objective function in Eq. (7) is di�cult to optimize since it is not convex. However, Eq. (7) can be
rewritten in frequency domain as.

min
CN ;C X

jjCx jjw;� + �jj jCN j � �jj2F s:t: CY = CX + CN : (8)

The above objective function overcomes the optimization challenge of ‘1-norm by adopting F-norm to con-
strain the frequency coe�cient of noise signal. To �nd local minima, we apply Lagrange multiplier on the
objective function in Eq. (8), we get

L(CX ; Cy ; E; ) = jjCxjjw;� + �jjCN jj � �jj2F + < E;CY � CX � CN > +


2
jjCY � CX � CN jj2F (9)

where E is the Lagrange multiplier and  is the weight parameter to balance the original objective function.
Eq.(9) above can be divided into two sub-parts and each can be solved individually.

Objective function for noisy matrix CN

L(CN ; E; ) = �jjjCN j � �jj2F � < E;CN > +


2
jjCY � CX � CN jj2F (10)

and objective function for desired matrix CX

L(CX ; E; ) = jjCX jjw;�� < E;CX > +


2
jjCY � CX � CN jj2F (11)

To minimize the loss function of CX as shown in Eq. (11), there is a need to minimize Eq. (10) for CN as

L(CX ; E; ) =
1


jjCX jjw;� +

1

2

 CX �
�
CY � CN +

1


E

� 
2

F

. The minimization of CN can be done by considering the objective function with respect to noisy data CN . Eq.
(10) can be written as

L(CN ; E; ) = �jjjCN j � �jj2F � < E;CN > +


2
jjCY � CX � CN jj2F : (12)

Equation (12) can be simpli�ed as

L(CN ; E; ) =
1


jjjCN j � �jj2F +

1

2

 CN �
�
CY � CX +

1


E

� 
2

F
: (13)

Consider P = CY � CX + 1
 E

and Q = sign(P ) � �

Substituting P and Q in Eq. (13)

L(CN ; E; ) =
1


jjjCN j �Qjj2F +

1

2
jjCN � P jj2F

Now, considering the objective function of desired matrix as shown in Eq.(11) and can be simpli�ed as

L(CX ; E; ) = jjCX jjw;�� < E;CX > +


2
jjCY � CX � CN jj2F (14)

L(CX ; E; ) =
1


jjCX jjw;� +

1

2

 CX �
�
CY � CN +

1


E

��
j2F (15)

which can be simpli�ed as

L(CX ; E; ) =
1


jjCX jjw;� +

1

2
jjCX � Zjj2F (16)

Where Z = CY � CN + 1
 E.

The above Equation 16 can be solved using soft-threshold scheme [3] [5] as follows. However, we �rst recall
the following results from [5].
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Lemma 1. 8A;B 2 Rm�n that satisfy ATB = 0, we have
1. kA+Bkw ;� � kAkw ;�
2. kA+BkF � kAkF

Lemma 2. 8M =

�
A B
C D

�
with A 2 Rm�m and D 2 Rn�n , if weight satisfy w1 � w2 � wm+n � 0, we have

jjM jjw ;� � jjAjjw 1 ;� + jjDjjw 2 ;�

where w = [w1; w2; ::::wm+n ] and w1 = [w1; w2; :::; wm ] and w2 = [wm+1 ; wm+2 ::::wm+n ]

Theorem 1. 8Y 2 Rm�n with singular value decomposition computed asY = U�V T , the minimizer of objec-
tive function (16) can be written as CX = UPV T whereP is computed as

P = min
P 0

1

2
jj� � P 0jj2F +

1


jjP 0jjw ;� (17)

Proof. Denoting by U? the orthogonal basis of the complementary space of U , we can write X as X = UA1 +
U?A2, whereas A1 and A2 are the components of X in sub-spaces U and U?, respectively. We can write

f(X) =
1

2
jjY �Xjj2F +

1


jjXjjw ;� (18)

=
1

2
jjU�V T � UA1 � U?A2jj2F +

1


jjUA1 + U?A2jjw ;�

� 1

2
jjU�V T � UA1jj2F +

1


jjUA1jjw ;� by Lemma 1 (19)

Similarly, for the row space basis V , we have

f(X) � 1

2
kUV T � UP 0V T k2

F +
1


jjUP 0V T jjw ;� (20)

Since U and V are both orthonormal matrices, we have

f(X) � 1

2
jj� � P 0jj2F +

1


jjP 0jjw ;� (21)

As a result, the minimizer of the objective function (18) can be obtained by X = UPV T

Here, the key issue is the weight determination. To optimize the weight, we have the following theorem.

Theorem 2. If weights satisfyw1 � w2 � w2:::: � wn � 0, the objective function in Equation (16) has globally
optimal solution:

CX = USw (�)V T

whereY = U�V T is the singular value decomposition of Y andSw is the generalized soft thresholding operator
with weight vector w

Sw (�)ii = max(�ii � wi ; 0)

Proof. Consider the optimization problem in Equation (17) and assume �P 0 is a diagonal matrix that has same
elements as of matrix P 0. As a result, we have

1

2
jj� � P 0jj2F +

1


jjP 0jjw ;� =

1

2
jj� � �P 0 � (P 0 � �P 0)jj2F

+
1


jj�P 0 + P 0 � �P 0jjw ;� �

1

2
jj� � �P 0jj2F

+
1


jj�P 0jjw ;� by Lemma 2

Since both � and �P 0 are in diagonal form, the optimal solution can be obtained by soft-thresholding operation
on each element, i.e., P = Sw (�) where

Sw (�)ii = max(�ii � wi ; 0)

With this in mind, we can compute a clean matrix by solving CX iteratively as shown in algorithm table 1.
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Table 1. Algorithmic procedure of FPCA

Input: Noisy Image Y where Y 2 Rm�n

Output: Noise clean Image X where X 2 Rm�n

For k=1:K Repeat :step-I to step-VIII

Step-I: Iterative regularization Y k = X̂ k + � (Y � Y k � 1)

Repeat step-IV to step-II to step-VIII

Step-II: Convert Image Y into frequency domain Cy  DCT (y)

Step-IV: Initialize E = CYs =�C Ys  > 0 and � > 0

While not converge do
Step-V: Compute singular value decomposition of Z as (U; �; V ) = svd(Z)

where Z = CYg � CN g + 1
 E

Step-VI: Minimize Cx g with respect to CN g as CX = US(� )V T

Step-VII: Update CN g with respect to CX g using Eq.13
end while

Step-VIII: Convert CX g to spatial domain X  IDCT (CY )

Step-X: Aggregate cleaned image

4 Experiments and Evaluation

The low-rank approximation problem described above readily admits a straightforward solution. In order to eval-
uate the performance of proposed approach, we used PSNR and the relative reconstruction error performance.
We have conducted several experiments on recommended images and compared the proposed FPCA based im-
age de-noising algorithm with several state-of-the-art de-noising methods, including RPCA [19], VBRPCA [1],
MOG-RPCA [20], FRPCA [18] and TFRPCA [18]. Detailed results are presented in table 1. Furthermore, we
noticed that the proposed approach showed visually pleasant de-nosing result while having higher PSNR and
fewer artifacts.

4.1 Dataset

Evaluation of proposed approach is performed on synthetic dataset. In the synthetic, commonly used pictures
(cameraman, Newton, Boat, Lena, buttery, baboon, bird, zebra, star�sh and peepers) are selected and con-
verted to grey scale. Experiments are performed on 10 noisy images. The sizes of each image is cropped to
128�128 and converted to grey scale. Noisy is added to the clean images as shown in Fig.2. Then, 400 images of
109�109 are cropped and copied four times. X is intrinsic low-rank due to strong conjunct information between
neighbouring areas of image. We have synthetically added certain type of noises (sparse 20% with in [-0.2,0.2],
Gaussian � = 0:05, mixed Gaussian with � = 0:05; � = 0 and mixed noise (both Gaussian and sparse: data
are corrupted with sparse noise followed by Gaussian noise) to the above-mentioned images as similar to [18]
to generate the ground truth. We have also considered mix Gaussian noise ( 40% of pixels are corrupted with
� = 0:1; � = 0 and rest of the pixels are corrupted with � = 0:05; � = 0.

Fig. 3. Test Dataset
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